

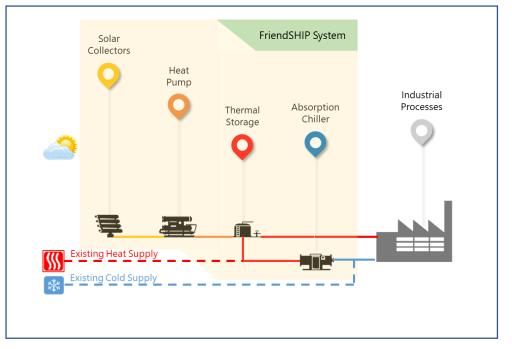
Forthcoming Research and Industry for European and National Development of SHIF

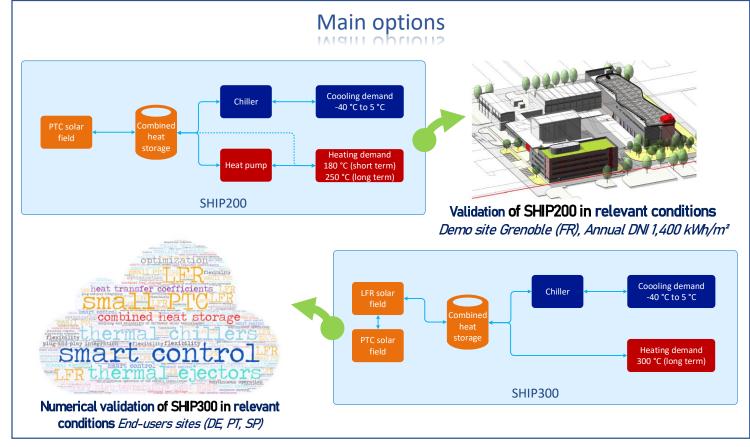
FRIENDSHIP update

Grupo MT 24/10/2023

The FriendSHIP European project

Forthcoming Research and Industry for European and National Development of SHIP


FRIEND
SHIP
Forthcoming Research and Industry for European and National Development of SHIP


Start: 01/05/2020 Duration: 48 months

Coord: CEA Consortium: 10

Budget: 4,999,423.74 € Type of action: RIA

Topic: LC-SC3-RES-7-2019 Solar Energy in Industrial Processes

The FriendSHIP European project

Forthcoming Research and Industry for European and National Development of SHIP

Project Coordinator: Valery Vuillerme

CEA (France)
valery.vuillerme@cea.fr

Project Manager:

Eleonora Alamaro AMIRES s.r.o. (Czech Republic) alamaro@amires.eu

Exploitation leader

Andrea Toscano Rina-C(Italy) andrea.toscano2@rina.org

Website:

https://www.friendship-project.eu/

Technical WP

FRIENDSHIP aims at superior performance by **incorporating several new improvements and functions to** the standards SHIP solution:

- Low-cost solar collectors combined with selective coatings (improve absorbance) and nanoparticles (improve heat transfer)
- An advanced **very high temperature heat pump** that enables continuous and stable heat supply at target temperatures **between 180 and 250°C**
- A high-density combined thermal storage that allows the storage of heat from the solar heat loop as well as from the process loop
- An **advanced control management** will allow the enhancement of the quality and availability of heat, to match the process demands and rationalize the use of the existing energy sources
- A cooler that enables **cold production** for industry from the residual high-temperature heat, either by using an **absorption** or **ejector** chiller

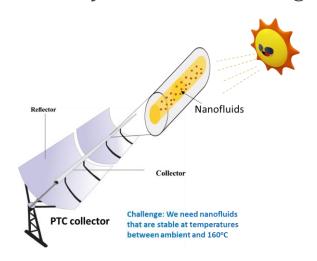
Solar Collectors

Main innovations

FRIENDSHIP aim at superior performance by **incorporating several new improvements and functions to the standards SHIP solution**:

- Low-cost solar collectors combined with selective coatings (improve absorbance)
 and nanoparticles (improve heat transfer)
- An advanced very high temperature heat pump that enables continuous and stable heat supply at target temperatures between 180 and 250°C
- A high-density combined thermal storage that allows the storage of heat from the solar heat loop as well as from the process loop
- A cooler that enables cold production for industry from the residual hightemperature heat, either by using an absorption or ejector chiller
- An advanced control management will allow the enhancement of the quality and availability of heat, to match the process demands and rationalise the use of the existing energy sources

Status

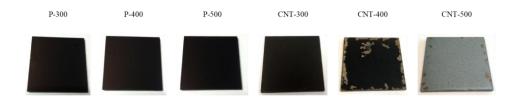

- Finished New selective coating to be used for the solar field of SHIP200 DEMO
- Deliverable: D2.1 Design engineering report for a solar thermal system with high availability
- 3 Papers :
- Review of the spectrally selective (CSP) absorber coatings, suitable for use in SHIP;
 Noč L.; Jerman I.; Solar Energy Materials and Solar Cells 2022, 238.
- A review of the use of nanofluids as heat-transfer fluids in parabolic-trough collectors; Chavez Panduro E.; Finotti F.; Largiller G.; Lervåg K.; Applied Thermal Engineering 2022, 118346.
- Environmentally sustainable electroplating of selective cobalt-chromium coating on stainless steel for efficient solar collectors; Zäll, E., Nordenström, A., Järn, M., Mossegård, J., Wågberg, T.; Solar Energy Materials and Solar Cells 2022, 111821.
- 1 video on Heat Production : https://vimeo.com/782532916

Solar Collectors

Nanofluids and selective coatings

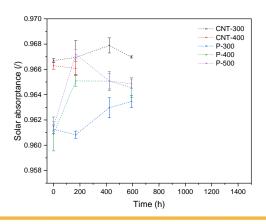
✓ Literature study of nanofluids at high temperatures

Advantage


- · Good thermal properties
- Inherently stable compared to e.g. microfluids (Brownian motions overcome gravitational settling)

)rawhacks

- High cost of production
- Stability can be broken by agglomeration stabilization mechanisms are challenging at high temperatures
- May lead to increased corrosion and erosion


→ There is a need for **more experiments** with nanofluids at temperatures above 100 °C

✓ Development and testing of Electroplating, Carbon nanotubes & Pigment based coatings

Characterization and ageing

→ DURASOL platform (CEA)

Main innovations

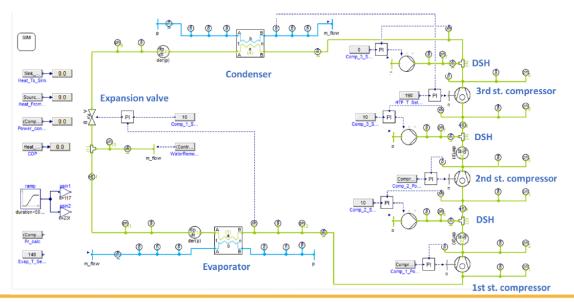
FRIENDSHIP aim at superior performance by **incorporating several new improvements and functions to the standards SHIP solution**:

- Low-cost solar collectors combined with selective coatings (improve absorbance)
 and nanoparticles (improve heat transfer)
- An advanced very high temperature heat pump that enables continuous and stable heat supply at target temperatures between 180 and 250°C
- A high-density combined thermal storage that allows the storage of heat from the solar heat loop as well as from the process loop
- A cooler that enables cold production for industry from the residual hightemperature heat, either by using an absorption or ejector chiller
- An advanced control management will allow the enhancement of the quality and availability of heat, to match the process demands and rationalise the use of the existing energy sources

Status

- Prototype commissioned and test campaign ongoing at SINTEF
- Public Deliverable 3.1: Initial heat pump concepts and integration principles for SHIP200 targeting heat delivery up to 200 °C (steam cycle) and 250 °C (e.g. CO2 cycle)
- 1 video on Heat Production: https://vimeo.com/782532916

Dynamic simulation



Results from Modelica simulations:

- ✓ Dynamic models developed for best short-term and long-term HP concepts
- ✓ Simulated at design and off-design conditions (50-100% heat load) to assess operational performance, stability and integrability

Closed loop steam HP cycle (SHIP 200)

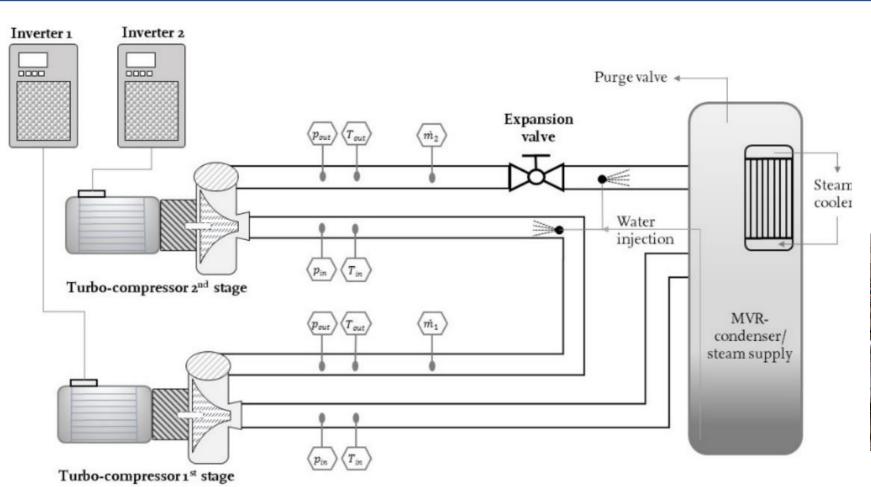
- ✓ COP variations between 4.75 4.96
- ✓ Low variations due to improved HX performance at part loads

Reversed Brayton CO₂ HP cycle (SHIP 250)

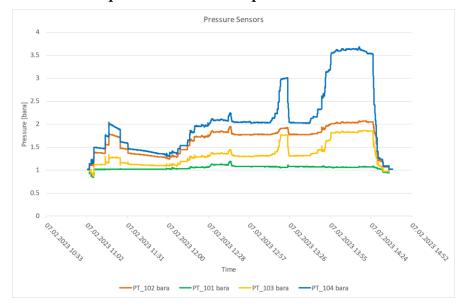
- ✓ COP at design point 2.44, 34% reduction at 50% load
- ✓ Improvement of control strategy may improve off-design performance

Turbo compressors

- Compressor: Rotrex 2 x E-C38R-IX-PT52 (EA42 head unit)
- Two compressor stages
- Rotational speed: up to 90.000 rpm
- Improved labyrinth Lip seal
- Titanium impeller
- Purge chamber



Turbocompressors test rig


Test rig in SINTEFs laboratory

FRIEND
SHIP

For thcoming Research and Industry for European and National Development of SHIP

Commissioning and first results

- Aim: test water injection, test of new sensors, optimize water purge
- Results testing:
 - Media: steam
 - Up to 243 °C and pressure 3.4 barA.

- No remaining issues for test with suction pressure 1 bar
- No issues due to high temperatures were detected

- Step Wise Approach

Main innovations

FRIENDSHIP aim at superior performance by **incorporating several new improvements and functions to the standards SHIP solution**:

- Low-cost solar collectors combined with selective coatings (improve absorbance)
 and nanoparticles (improve heat transfer)
- An advanced very high temperature heat pump that enables continuous and stable heat supply at target temperatures between 180 and 250°C
- A high-density combined thermal storage that allows the storage of heat from the solar heat loop as well as from the process loop
- A cooler that enables cold production for industry from the residual hightemperature heat, either by using an absorption or ejector chiller
- An advanced control management will allow the enhancement of the quality and availability of heat, to match the process demands and rationalise the use of the existing energy sources

Status

- Prototype manufacturing ongoing and test campaign coming soon at CEA
- Deliverable: D5.1 Detailed design of PCM storage
- Dissemination: IN-POWER workshop 2020, SolarPACES 2021
- 1 video on Heat Storage : https://vimeo.com/814166694

Material characterization - binary eutectic

Proportions mixed and heated 4h @ 250°C, then characterized

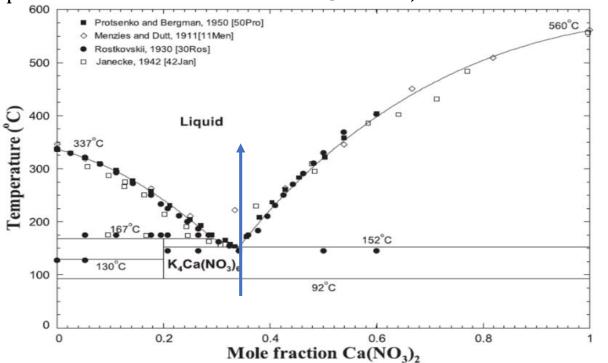
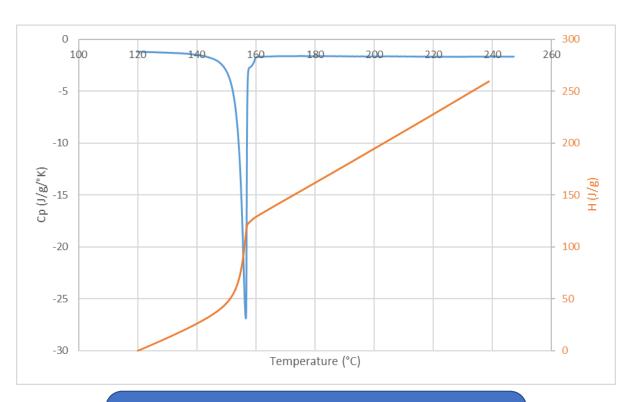
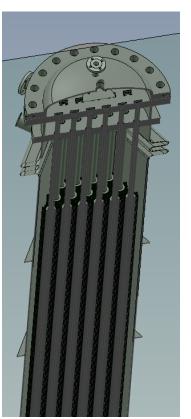
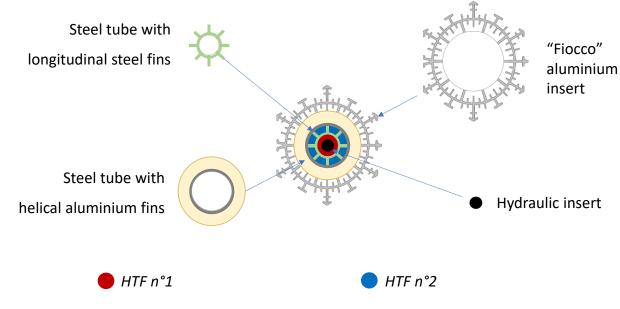
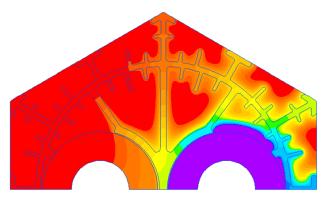
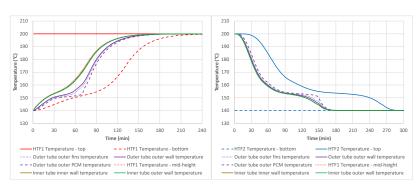



Figure 1. Calculated KNO₃-Ca(NO₃)₂ phase diagram.


Source: Chartan et al., 2019, The Journal of Chemical Thermodynamics, 2019


T _{onset}=152°C, H_f=70 J/g, H_[140-180]=130 J/g Density Solid @ 22°C: 2 151 kg/m³ Liquid @ 185°C: 2 074 kg/m³


Design of the CHS

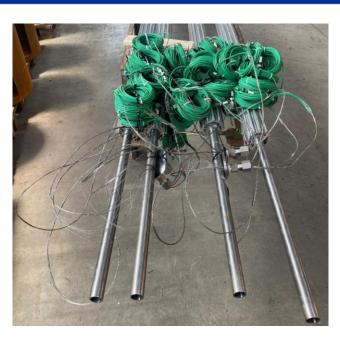


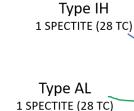
24 double-tubes arranged in a 98 mm triangular pitch in a hexagonal shell.

CFD simulation of CHS elementary volume

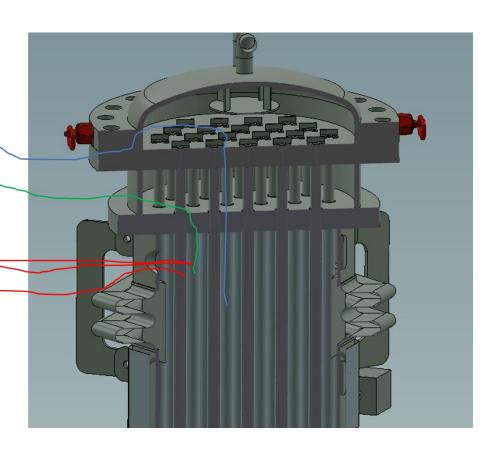
Dynamic simulation of CHS in charging and discharging modes

Manufacturing of the CHS





Installation of instrumentation of the CHS



Types AH / FA / FB

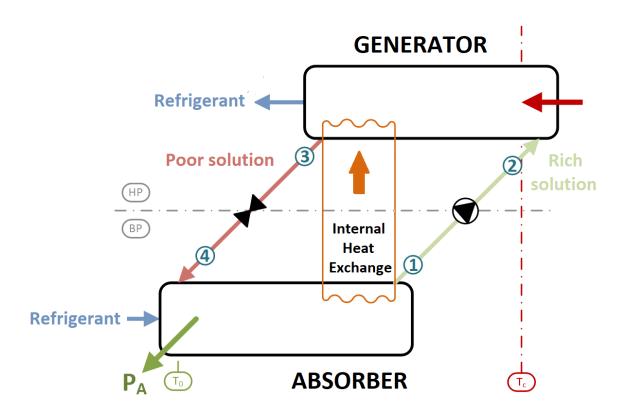
1 SPECTITE / tube + fioco (21 TC)

4 SPECTITE total

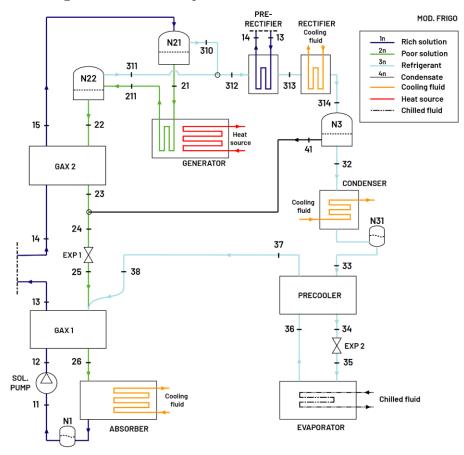
Main innovations

FRIENDSHIP aim at superior performance by **incorporating several new improvements and functions to the standards SHIP solution**:

- Low-cost solar collectors combined with selective coatings (improve absorbance)
 and nanoparticles (improve heat transfer)
- An advanced very high temperature heat pump that enables continuous and stable heat supply at target temperatures between 180 and 250°C
- A **high-density combined thermal storage** that allows the storage of heat from the solar heat loop as well as from the process loop
- A cooler that enables cold production for industry from the residual hightemperature heat, either by using an absorption or ejector chiller
- An advanced control management will allow the enhancement of the quality and availability of heat, to match the process demands and rationalise the use of the existing energy sources


Status

- Prototype commissioned and tested at CEA
- Deliverable D4.3 Optimal design of absorption chiller concepts targeting cold production down to -20°C (short term) and -40°C (long-term)
- Deliverable: D4.2 Optimal design of ejector chiller concepts targeting cold production down to 5 °C (short term) and -10 °C (long-term)
- 2 Papers :
- Choked liquid flow in nozzles: Crossover from heterogeneous to homogeneous cavitation and insensitivity to depressurization rate; Wilhelmsen Ø.; Aasen A.; Chemical Engineering Science 2022, 248, Part B.
- One-dimensional mathematical modeling of two-phase ejectors: Extension to mixtures and mapping of the local exergy destruction; Wilhelmsen Ø., Aasen A., Banasiak K., Herlyng H., Hafner A.; Applied Thermal Engineering 2022, 119228.
- Dissemination: SolarPACES 2021, ICR 2023, Pôle Cristal 2023

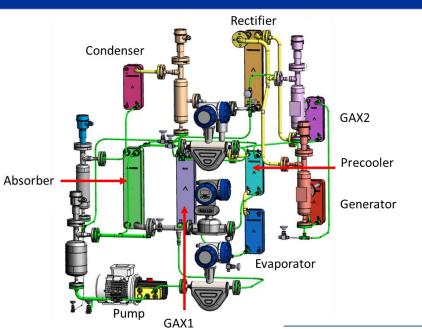

FRIEND
SHIP
Forthcoming Research and Industry for European and National Development of SHIP

Design of the GAX

Architecture studies: multi-effect

Absorption Gax Cycle simulation with EES

FRIEND
SHIP
Forthcoming Research and Industry for European and National Development of SHIP


GAX Prototype

Use of common welded plate heat exchangers:

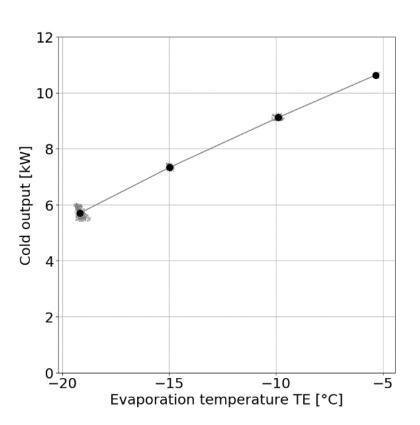
- widely available technology
- reduced-cost,
- compact
- easy-to-manufacture machine
- easier to scale up

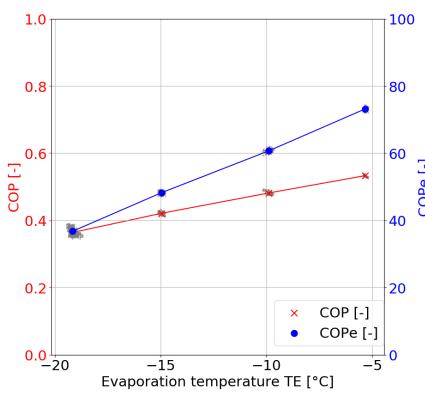
GAX:

- Requires a higher generator temperature
- Temperature overlap between absorption and desorption → possible recovery of internal energy
- Higher performance allows **lower cold** temperature production

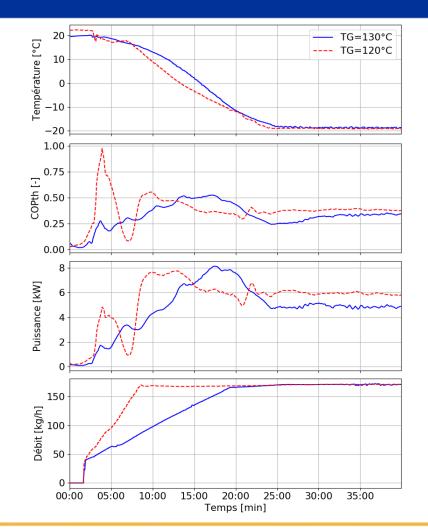
Parameters	Value	Measure Unit
Generator inlet temperature	130	°C
Absorber inlet temperature	20	°C
Evaporator outlet temperature	-20	°C
Maximum output	10	kW

GAX prototype unit tests

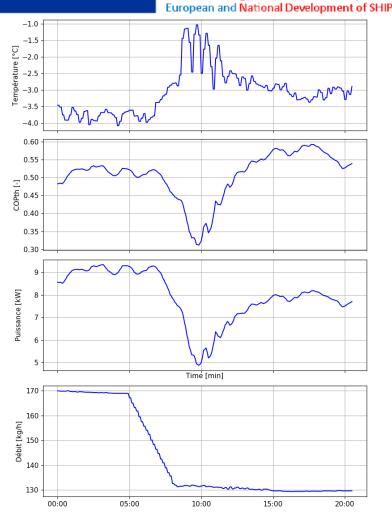

- Dynamic and steady state conditions
- High-precision sensors to measure flow rates, temperatures and pressures


Parameters	Sensors type	Quantity	Uncertainty (+/-)
Heat transfer fluid temperature	Pt100	8	0.1 K
Refrigerant/Solution temperatures	Thermocouples	25	0.3 K
Refrigerant/Solution pressure	0-10 bar and 0-40 bar	4	0.2 % full scale
Refrigerant/Solution flow	Mass flowmeter	3	0.20 %
External fluid flow	Mass flowmeter	4	0.30 %
Density	Mass flowmeter	3	2 kg/m^3
Liquid level	Capacitance level sensor	3	0.50 %

Performance measurements



- At -5°C, the prototype provides nearly 11 kW of chilled water with a **thermal COP of 0.54**
- At -20°C, 6 kW is produced with a COP around 0.36
- Electric COP_e ranges from ~35 to ~70


Dynamic behaviour

← Evolution of various parameters during start-up for different generator temperatures (TG=120°C TG=130°C) and different pump start-up ramps (6 and 15 min).

Dynamic behaviour to a **drop of the pump flow rate** from 170 kg/h to 130 kg/h. →

The inertia of the prototype depends on the stabilization of the hydraulic conditions and the thermal inertia of the exchangers. **Generally, a good stability is obtained around 10 minutes after the target mass flow rate is reached.**

Advanced Control Management

Main innovations

FRIENDSHIP aim at superior performance by **incorporating several new improvements and functions to the standards SHIP solution**:

- Low-cost solar collectors combined with selective coatings (improve absorbance)
 and nanoparticles (improve heat transfer)
- An advanced very high temperature heat pump that enables continuous and stable heat supply at target temperatures between 180 and 250°C
- A high-density combined thermal storage that allows the storage of heat from the solar heat loop as well as from the process loop
- A cooler that enables cold production for industry from the residual hightemperature heat, either by using an absorption or ejector chiller
- An advanced control management will allow the enhancement of the quality and availability of heat, to match the process demands and rationalise the use of the existing energy sources

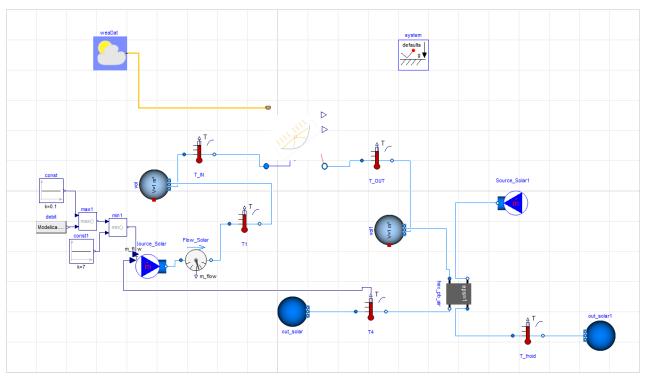
Status

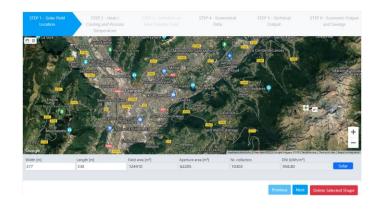
- Modelling of digital twins in Modelica ongoing at CEA
- 1 Paper:
- Solar Field Output Temperature Optimization Using a MILP Algorithm and a 0D Model in the Case of a Hybrid Concentrated Solar Thermal Power Plant for SHIP Applications; Kamerling, S.; Vuillerme, V.; Rodat, S.; Energies 2021, 14, 3731.
- Dissemination: SWC 2021, EuroSun 2022

Advanced Control Management

Dynamic Modelling using Dymola

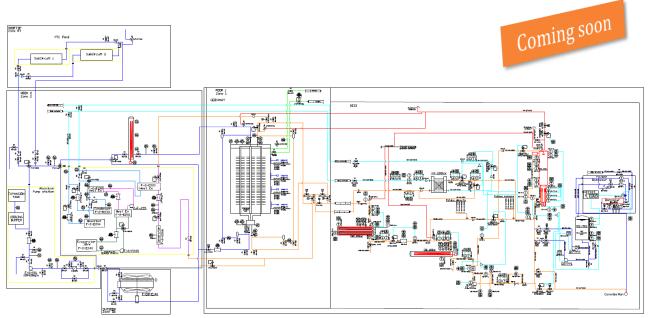
Development of a library of specific components

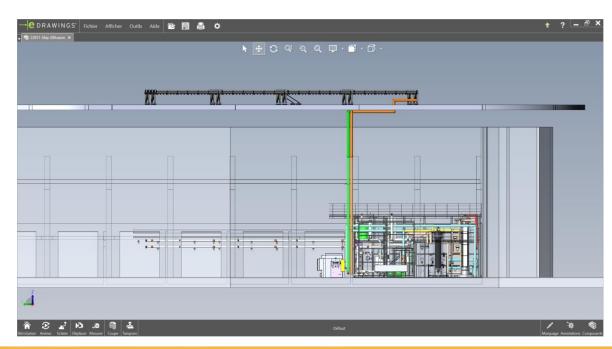



Development of SHIP200 and SHIP300 digital twins

What else?

✓ Online pre-design tool to simulate the performance of SHIP200 and SHIP300, including an economical evaluation




Final DEMO

- FINAL OBJECTIVE 2024:
- Validation of SHIP200 in relevant conditions
 Demo site in Grenoble (FR) Annual DNI 1,400 kWh/m²

Forthcoming Research and Industry for European and National Development of SHII

Thank you for your attention!

SINTEF

