

SYNERGY INNOVATION, WIN - WIN COOPERATION

Electrical Heat Exchangers Application

About

- 1. Engineering Service
- Project Promotion
- Concept Engineer
- Engineering Service

- 2. Commissioning Suport+logic Support
- Commissioning Supervision
- Commissioning Procedures
- Operation and maintenance manuals
- Control Logic (LOC+SCS+DCS)

- 3. Project Optimization
- Reduce the O&M cost
- Increase the efficiency
- 4. Project Finance
- Project Financing Assistant

Services

Project Promotion

- · Conceptual engineering in order to fulfill all administrative and legal requirements
- Survey project local component localization

Conceptual Engineering

- Obtaining of typical meteorological year based on satellite data and meteorological stations
- Feasibility studies and annual electrical generation simulations
- Conceptual engineering
- Financial analysis

Engineering Services

- Basic engineering
- Purchase engineering: technical specifications and quotation technical economical evaluations
- Detail engineering
- Technical assistance during construction
- Commissioning Procedures
- Operation and maintenance manuals

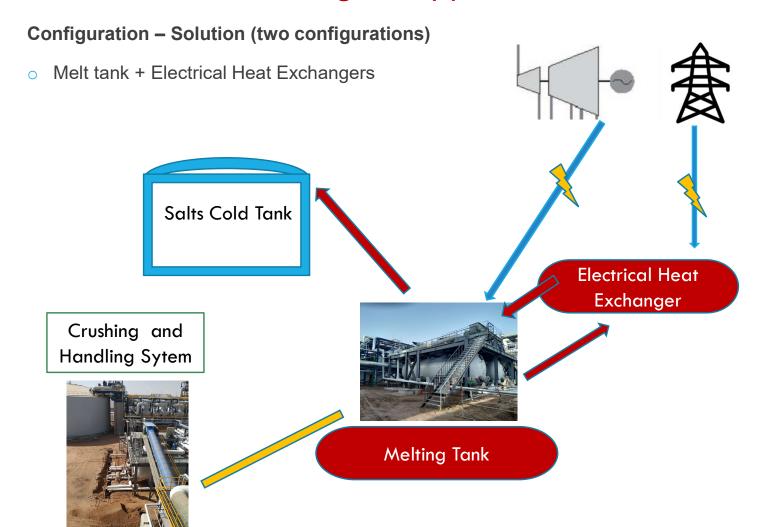
Product Development

Solar Field

- HCE tubes
- Mirrors
- Balancing Valves
- Ball Joint Insulation
- Hydraulic Unit

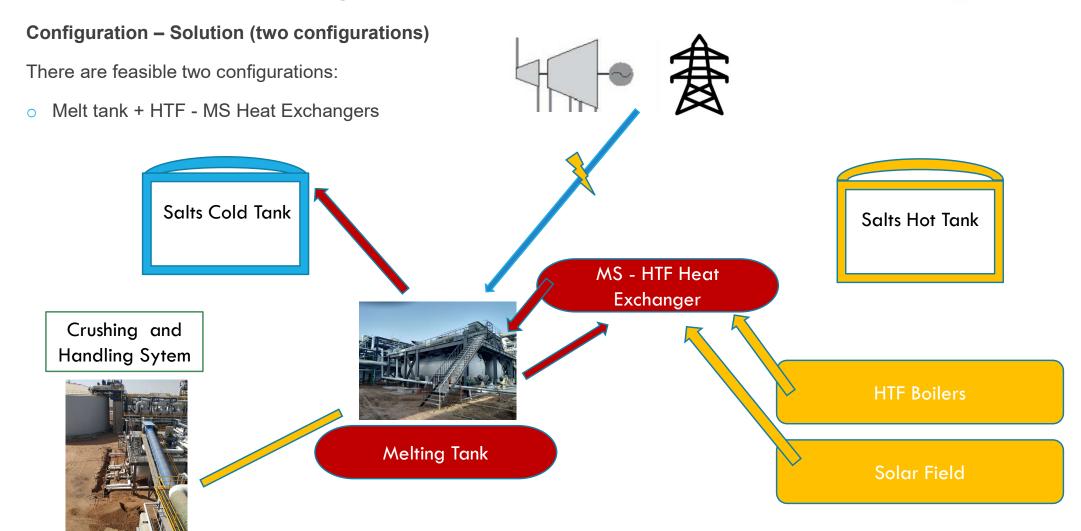
HTF System

HTF Fluid


TES System

- Molten Salts Valves
- Tank Insulation
- Tank Preheating
- Melting System
- Electrical Heat Exchangers

Electrical Heat Exchangers Application / Melt Solution



Electrical Heat Exchangers Application / Melt Solution

Electrical Heat Exchangers Application / Melt Solution

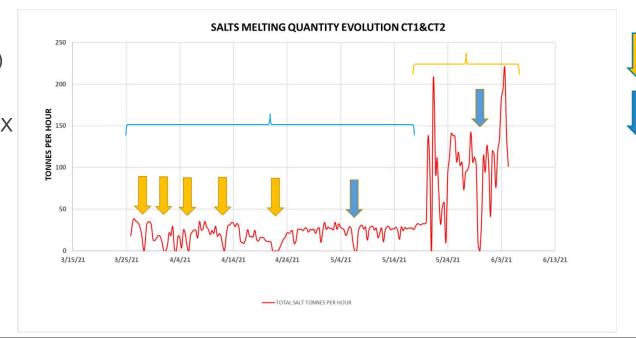
Day Sand Storm

Day Strong Rain

Advantages

- More robust system
- Less Gas consumption
- Consumption Optimization
- Electrical Heat Exchangers

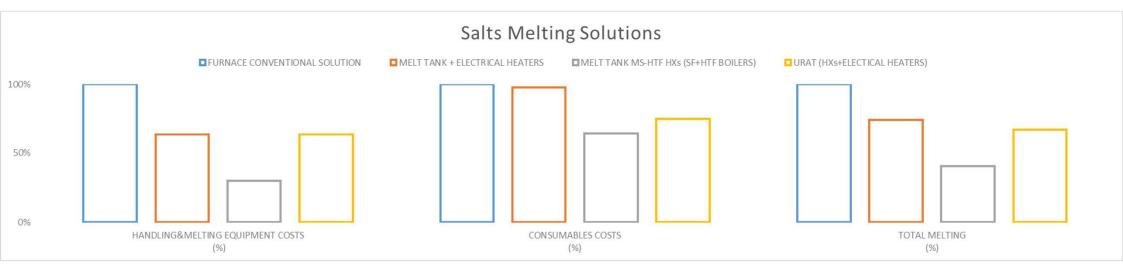
Urat Data Melting Process


- > 1st phase, Melt Tank + Elec HX (3)
 - Average Ratio 504 ton/day
- > 2nd phase, Melt Tank + MX-HTF HX
 - Average Ratio 2424 ton/day
- Melt Process
 - > Average: 986 ton/day
 - Peak: 4756 ton/day

Simple Storage, Crushing and Handling System

Greener solution

Possibility to consume own thermal power or electrical generation generated


Not leasing, use for hybrid purpose

Electrical Heat Exchangers Application / Melt System

Cost Comparative

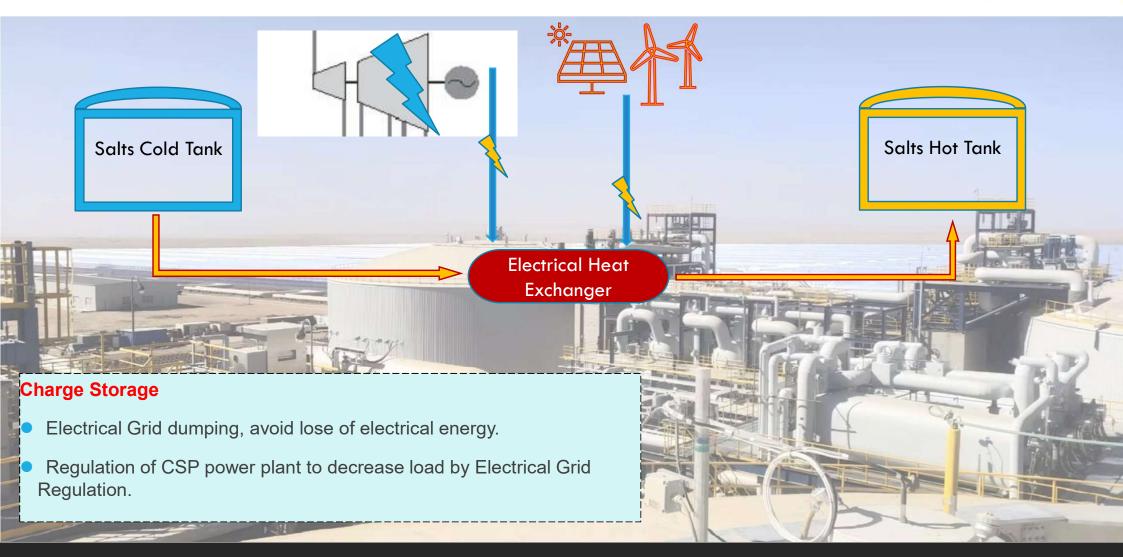
Remarks:

- Most of equipment's use in Salts Melting System, included Electrical Heat Exchangers, are used for Hybridization Thermal Storage.
- Electrical HX cost included in comparative as leasing but remain as power plant value, so amortization done just compare with conventional furnace solution

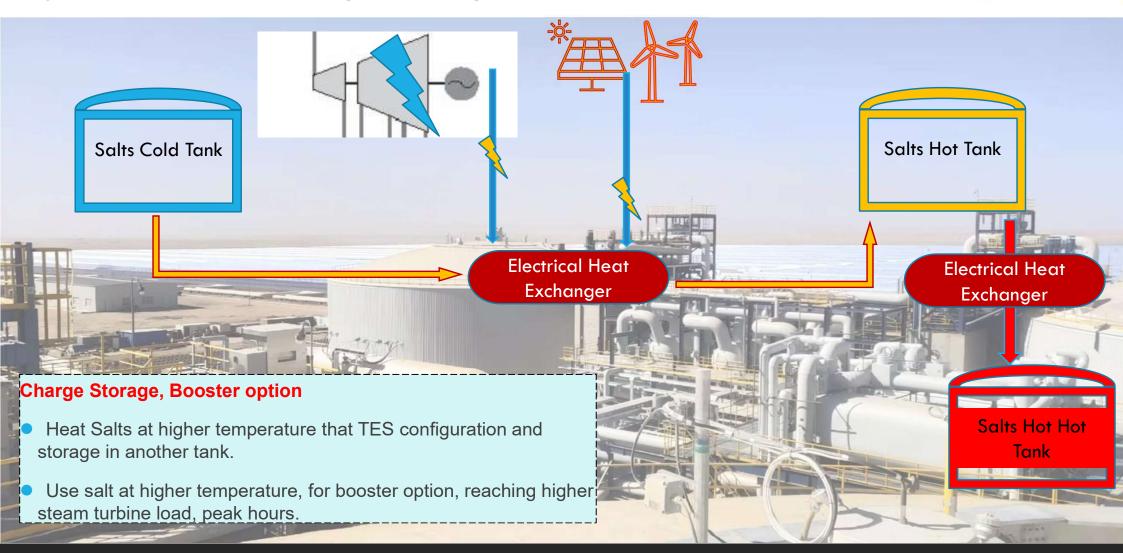
Hybrid Solution

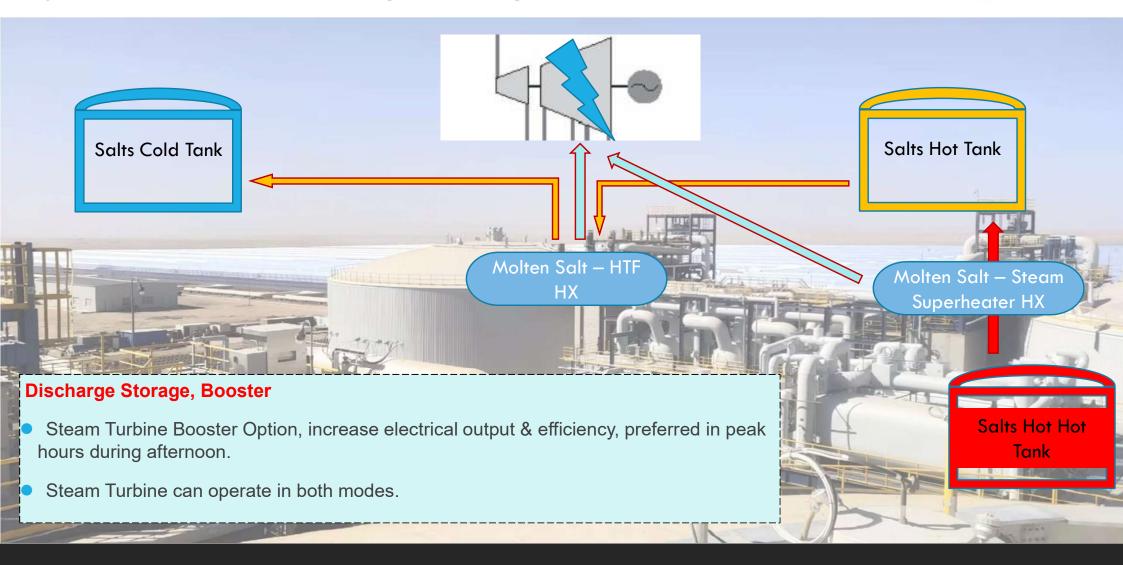
Advantages

- Get dump energy at low cost, valley hours preferably.
- In case of mandatory decrease of turbine load, increase self-consumption.
- Increase Efficiency at Partial Loads.
- Increase Efficiency in Peak Hours, using Booster configuration in Steam Turbine.
 - Steam Turbine necessary to be configured for booster configuration.

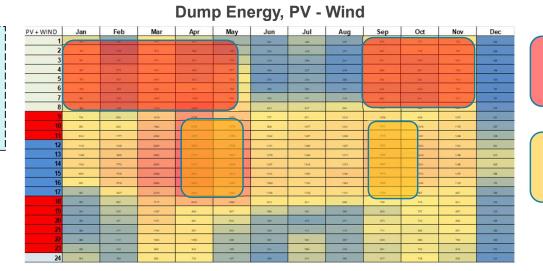

Dis - advantages

- Medium Voltage area need to be configured properly since basic design phase.
- Detail design with piping, valves, tracing,...
 of complete solution, not focus only on
 Electrical Heat Exchangers.
- Electrical Heat Exchangers low experience in market.


Hybrid Solution, Charge Storage – Normal Operation


Hybrid Solution, Charge Storage – Booster Operation

Hybrid Solution, Discharge Storage, Booster



Grid Integration / PV-Wind Dumping

Software

- Weather forecast Dump
- Dispatchability policy Operation Guide.

Dump Energy

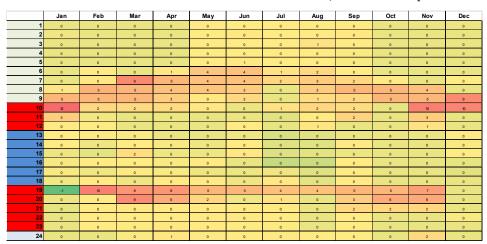
Increase Selfconsuption (Market Regulation)

Without Electrical Heat Exchangers, TMY Annual Electrical Generation

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1	0	0	21	30	42	31	25	35	33	2	0	0
	2	0	0	14	30	38	26	23	30	27	0	0	0
	3	0	0	7	24	35	16	18	17	18	0	0	0
Valley	4	0	0	4	16	27	13	13	11	8	0	0	0
valicy	5	0	0	0	0	6	11	6	0	0	0	0	0
	6	0	0	0	0	21	8	9	3	0	0	0	0
	7	0	0	0	31	56	48	48	48	12	0	0	0
	8	0	1	23	67	71	62	69	70	36	0	0	0
	9	3	45	56	86	78	70	75	74	62	52	4	0
	10	48	82	75	92	81	78	83	79	71	78	41	45
Peak	11	80	90	76	93	79	82	87	82	68	80	63	77
reak	12	75	88	78	90	81	86	83	85	71	79	63	63
	13	67	82	79	88	84	83	88	78	70	80	58	42
	14	67	83	80	87	82	77	85	81	72	78	50	46
Normal	15	75	82	80	88	81	74	83	80	72	77	55	62
	16	75	82	76	83	77	72	78	75	67	76	42	45
	17	32	66	70	79	75	72	69	71	64	69	13	0
	18		51	64	76	74	65	68	70	60	55	6	0
	19	9	40	52	63	65	57	56	65	56	49	5	0
	20	4	35	49	51	59	51	44	62	50	35	3	0
	21	0	26	44	45	55	46	38	56	44	29	0	0
Peak	22	0	15	36	44	52	41	34	46	42	20	0	0
	23	0	5	31	40	48	36	32	43	35	13	0	0
	24	0	0	29	34	45	35	29	41	31	6	0	0

PV-Wind Dump Analysis, Electrical HX

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	2.2	16	4.4	2.3	18	15	1.1	0.7	3.0	1.5	4.1	11
2	15	16	4.4	2.3	2.5	11	0.7	0.7	3.0	18	4.5	0.7
3	1.8	2.0	5.1	3.0	2.2	11	1.1	15	2.6	1.8	3.8	11
4	15	16	4.7	3.0	2.9	0.8	0.7	18	19	18	3.8	11
5	15	2.0	4.0	2.6	22	11	15	15	19	15	3.8	15
6	15	16	3.6	2.3	18	0.8	18	15	2.3	18	3.8	15
7	15	0.8	1.5	1.5	11	0.4	0.7	15	11	0.7	3.0	11
8	0.4	0.8	1.1	1.5	15	0.8	0.4	0.7	19	2.2	3.1	15
9	0.4	12	1.5	0.4	16	0.4	0.4	15	19	0.4	3.8	0.4
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	0.4	0.4	1.5	0.4	11	0.8	0.0	11	2.3	11	11	0.0
14	0.7	0.4	1.5	1.0	11	0.8	0.0	15	1.5	1.1	15	0.0
15	0.7	12	0.7	1.1	15	0.4	0.0	0.7	19	11	15	0.0
16	0.7	0.8	1.1	1.5	17	0.8	0.1	11	15	1.1	15	0.0
17	0.7	0.8	1.5	1.9	2.2	0.8	0.7	0.7	19	15	15	0.7
18	1.1	0.8	1.1	1.1	2.2	0.4	0.4	0.7	1.1	1.5	15	11
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24	2.2	2.4	3.6	3.0	18	11	15	11	3.4	2.2	4.1	18


Grid Integration / Results

Increase of Annual Electrical Generation, Normal Operation

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	3	6	8	3	3	0	0	0	0
7	0	1	12	15	7	4	3	3	10	1	0	0
8	1	9	20	7	4	1	1	3	8	12	5	0
9	15	11	5	2	0	2	3	3	1	4	22	13
10	5	2	2	2	0	0	0	3	1	0	8	6
11	0	0	0	0	1	0	0	0	3	0	3	0
12	0	0	0	0	2	0	0	1	0	0	1	0
13	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	1	0	0	1	0	0	0	0	0	0
16	0	0	0	0	0	2	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0

Increase of Annual Electrical Generation, Booster Operation

- Increase Dispatchability of plant.
- Efficiency Energy Dump Charge vs Extra Energy Generated > 70% (close to BESS system)
 - Increase thermal load of Steam Turbine at beginning of day, substantial increase of efficiency of cycle. (5% or more)
 - ❖ At low load not enough for steam turbine, storage available to increase, cloudy season winter.
- Booster Option, increase efficiency of turbine, higher impact.
- Depending on dumping, and steam turbine load, there are a limitation of electrical heat exchangers size.

Melt System

Electrical HX Solution

Dump – Meteorological Forecast Analysis

Charge – Dispatchability
Policy

QUESTIONS? THANK YOU

https://www.linkedin.com/company/ingenergio

Phone: 0034 644 776 362

Email: egoitz.sanmiguel@ingenergio.com

Address: Plaza Euskadi 5, Torre Iberdrola, Planta 9 Oficina 4

